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Numerical calculation of relativistic charged particle beams moving in axisymmetric 
systems in which the presence of a residual neutral gas is possible is considered. 
In this content it is essential to consider phenomena related to collisions between 
charged particles and neutrals (for example, ionization and charge transfer). Al- 
gorithms are constructed for numerical modeling of ionization processes within the 
framework of the ERA program complex [I]. Solutions of model and practical prob- 
lems are presented as examples. Such problems were studied previously in [2, 3] 
where ionization processes were considered by a more complex method requiring a 
greater volume of calculations but valid at lower pressures. 

We will consider the following mathematical formulation of the problem. In a closed 
axisymmetric region G = G + F with boundary F we must calculate the motion of a beam of 
charged particles bearing electric charge e (for the feature we will assume that the "pri- 
mary" charged particles beam consists of electrons) with rest mass m. In the region G there 
may exist a neutral gas under a pressure p which is a function of (r, z), the coordinates of 
the observation point. 

The equation of motion of the electron beam particles has the form 

d( dR) e [Vx H], (I) d~ ?m ~- = eE + 7 

where y is the relativistic factor, c is the speed of light, t is time, V = dR/dt, E, H are 
the electric and magnetic fields, and R is the radius vector of the electron. 

Particle coordinates and velocities are specified at the initial moment: 

nl,=o = Ro, V lt=o = vo.  (2)  

The electric field E ~--grad ~ is found by solution of the Poisson equation for the po- 
tential 

A~ = --4xp (3 

with boundary conditions 

~lr = g, O ~ n l r  = O, (4)  

where g is a specified function of the coordinates and p is the net density of electron and 
ion space charge. 

We assume that the magnetic field may be represented as the sum of the external magnetic 
field and the intrinsic magnetic field of the beam. The current Je of the electron beam at 
the boundary where the particles enter the region is assumed to be either a known function of 
the coordinates, or is defined by the "3/2" law [4]. The ion current density Ji depends upon 
the parameters of the interaction between the electron beam and the neutral gas. The ions 
formed by collisions are assumed to be nonrelativistic. Their motion obeys the equation 

M ~ R ~ t  ~ = q E +  ~) [V~ • He] , (5) 

where M is the mass and q the charge of the ions, and He is the external magnetic field. 

Calculation of the electric field, i.e., solution of Poisson equation (3) with boundary 
conditions (4), is performed by difference methods on a rectangular grid with piecewise-con- 
stant step [I]. 
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The external magnetic field is either homogeneous, or calculable throughout the region 
from values specified on the axis of symmetry with the aid of the series of [4]. For inte- 
gration of the equations of motion (I) with initial conditions (2) we will use a scheme with 
second-order accuracy in time. In accordance with Bush's theorem [5] and using expressions 
for analytical extrapolation of the magnetic field from its values on the axis of symmetry, 
the angular velocity of an electron at the point (r, z) can be defined as [4] 

[ ( ) ] e i r~H~(O, zo) i 2 " (~ ~m? H (0, z) --  r2r- f i  H (0, Zo) -- -~ -~ , = - - -  r HI(O, z) (6 )  

w h e r e  ( r 0 ,  z0)  a r e  t h e  c o o r d i n a t e s  o f  t h e  e n t r y  p o i n t .  We i n t r o d u c e  t h e  q u a n t i t i e s  

Pr = "~vr, p ,  = Y~z, P~' = Y~ 

(where vr, Vz are the components of the velocity V). 

From Eq. (I) we obtain the relationships 

dp~ �9 e e (  Pz) 
d'-T = r~2y + "~ Er + --mc Hzr~? -- H~ ~- , 

dPz e e -- g~r~ 
d--f = ~ Ez + ~ H,~ T ': 

which we integrate numerically with step Atn using the scheme 

+ At. [r e 
= t~" ~ + 

. . . . . . . . . . . . .  (7) 
.~+1 = .D~ "-~ ,At,n, t~-.,,Fe --z~"rt+l/2 .~ ~e ~.,t..,t ~ / "  1./'n,+1/2 (.pr'tl,...t... p~Jrl)/(2,~'a+l/2 ) --  ~r+l/21.zt-t-t/21,D~-l-1/2/,~'t4-1/2],, 

which has an error of O(Atn2). 

The values of the electric and magnetic quantities are calculated here for the mean point 

n Atn zn+l/2 zn l~n Atn 
r n+*/2 = r" + vr - ~ - ,  = + z T" ( 8 )  

Near the axis of symmetry it may be the case that r n+I/2 < 0. In this case, the sign of the 
quantities r n, r n+I/e, v n changes in Eq. (7). At the point with the coordinates of Eq. (8) 
we find the value p~+i/2 with Eq. (6). 

We carry out the final calculation of coordinates and velocities with the expressions 

~n.-F1 ~n§ . �9 _n - -  _n+l pn .~ p~+l .-+1 /Jr .n+l 
Z UZ ~ r ~ + * = r " +  ~ At . ,  z ~ + i = z  ~ + .  Ate, u~ = ~ ,  ~m+i' 2yn+a/2 

where y at the mean point is defined as 

'~"+~/~ i + I ~q~('~n+:/2, ~+:/~) I 
. B.~C 2 

and at the (n + 1)-th point, as 

y,+1 = i + - -  = + (p +9 + p ,  J J . C2 

Such an approach, i.e., calculation of y at the mean point in terms of the potential, and at 
the (n + 1)-th point in teems of the values of p~+Z _n+1 , , Pz , p~+1, is used for the following 
reasons. Determination of the potential at any point requires a significant volume of cal- 
culations related to finding the closest-lying nodes of the difference grid and carrying out 
interpolation. At the point (n + I/2) these operations are carried out in one way or the 
other during determination of the electric field intensity components, while at the point 
(n + I) they must be performed specially just to determine y. Therefore, in the latter case 
it is more economical to perform calculations with Eq. (9). 

In calculating the intrinsic magnetic field we consider only the azimuthal component 

H~ = 2I/cR, 
where I is the current through a section of radius R. 



The basis of the numerical algorithm for calculating H~ is the method described in [6]. 
Trajectories passing through nodes of the difference grid encompassing the subregion in which 
the beam travels recall the spatial pattern of current distribution lij in the region under 
consideration. In the present approach, commencing from the assumption that the current den- 
sity is constant over the limits of the (i, j)-th elementary cell, the following expressions 
are constructed for calculation of the intrinsic magnetic field: 

H~ (rT, ZT) : 

2Ilj 
c(O,5h;)2rT at:  rT~O,nhr l ,  

2 r 2 
2 [I~-lj + (I~i-- / i -~j)]  r~ -- i-1/2 
CF T 2 ~ - -  a t  r T ~ 0 , 5 h ~ ,  

r i + l / 2  - -  ri_l/2 

where ri• = 0.5(r i + ri• h~ is the grid step along the axis of symmetry; lij is the 
total current, i.e., the sum of the currents of all trajectories passing through the j-th 

2 2 
section with area &Sij = ~(ri+I/2 -- ri-1/2) [near the axis of symmetry ASij = 0.25~(h~)e]. 

Numerical simulation of processes occurring upon passage of the electron beam through a 
medium with a residual gas is carried out in the following manner. We note that electrons 
generated in ionization processes are assumed to be "fast," and their contribution to the 
space charge is not considered. 

In calculating the electron trajectory from the mean point (rE, z~) of each interval of 
length 51~ we "release" an ion trajectory with initial conditions (7), carrying a current 

where I~ is the current of the electron trajectory, No is the density of the neutral gas 
(No = p/kT), o i is the ionization section, dependent on the electron energy [7]: 

_ 

( ~  i s  t he  i o n i z a t i o n  p o t e n t i a l  and c l  i s  a c o e f f i c i e n t  dependen t  on the  c h a r a c t e r i s t i c s  of  
the  r e s i d u a l  g a s ) .  We i n t e g r a t e  the  e q u a t i o n s  o f  ion  mo t ion  (5) n u m e r i c a l l y  by a method of  
s e c o n d - o r d e r  a c c u r a c y .  I n  c a l c u l a t i n g  the  ion  t r a j e c t o r y ,  we w i l l  c o n s i d e r  c h a r g e  t r a n s f e r  
p r o c e s s e s ,  which  c o n s i s t  o f  f o r m a t i o n  of  a n e u t r a l  and an ion .  To do t h i s ,  f rom the  mean 

�9 + + �9 + 
polnt (r~, z~) of each interval Alg of the "primary" ion trajectory we "release" a secondary 
ion trajectory, carrying a current 

where ~ip is the charge transfer section. This trajectory is calculated to its exit from the 
region without consideration of ionization processes caused by its ions. For further calcula- 
tion of the "primary" ion trajectory, the current of the latter is decreased by the amount 

+~ The section Oip is determined from the experimental of the charge transfer current AI . 

dependence on primary beam energy. 

The algorithms described above were realized in the form of a module for the ERA applica- 
tions program package [I], written in FORTRAN. The package supports output of electron and 
ion trajectories to a plotter. Since the amount of data generated in problems with considera- 
tion of ionization effects is large, provision is made for dividing the calculation region 
into several subregions with output of ion trajectories in each such subregion to a specified 
resolution�9 This approach permits obtaining a detailed picture of trajectory behavior in the 
subregion of interest without the encumbrance of superfluous data output. 

A calculation was performed for a one-dimensional planar diode 0 ~ z ~ z k = 10 cm with 
potentiai boundary conditions T(O) = O, ~(ZH)-- 500,00 V, in which at the plane z = 0 an elec- 
tron beam is released with zero initial velocity and current density calculable by the "3/2" 
law. The electron beam moves in an air medium under a pressure p = 0.667 Pa. Ionization of 
the residual gas, assumed to consist of nitrogen molecules, by electrons was considered. 

The calculations were performed on a uniform grid with 80 steps along the z axis. The 
ion trajectories were "released" at intervals AZ~, the lengths of which were determined as 
follows (dimensions in cm): 
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Figure I shows a graph of the function ~=(~p--~s)}~, the relative deviation of the 
potential distribution ~p w~th consideration of ionization processes from the potential dis- 
tribution ~s of the self-consistent problem. This function is at a maximum in the cathode 
region, leading to a significant increase in density of the current removed from the cathode 
as compared to the self-consistent problem without consideration of ionization processes (the 
current density with consideration of ionization jp = 18.1A/cm z, while with neglect of ion- 
ization JS = 8.2 A/cm2). This significant increase in current density causes the function to 
decrease and change sign upon exit from the cathode region. 

Figure 2 shows the ionization section oi tel = 2"I0 -Is cm 2 in Eq. (10)] as a function of 
potential; it is evident that this function also reaches its maximum near the cathode (the 
ionization potential of nitrogen molecules is equal to 15.6 eV). 

To refine the calculations in the cathode region the following iteration process was 
developed. In the interval ~z = [0, O, 02] a higher-accuracy calculation was performed on a 
nonuniform grid with boundaries of the constant step zone z0 = O, zl = 0.0005, z2 = 0.001, 
z3 = Q.002, z~ = 0.004, zs = 0.009, z~ = 0.02 and number of nodes per zone Zl = 10, ~2 = 5, 
Z3 = 5, 14 = 4, ~s = 4, ~ = 5; the intervals A~ were then selected such that the electron 
trajectory traversed a distance between points at which the potential equalled k~i. The num- 
bers k i were specified as kl = ~, k2 = 1.5, ks = 2, k~ = 2.5, ks = 3, k~ = 5, k? = 6, ks = 8, 
k9 = 10, kz0 = 20, kl~ = 30, k12 = 50, ki3 = 100, k14 = 500, k~s = 2000. On the subregion 
boundary at z = 0~ the potential was specified from the solution of the same problem on the 
"coarse" grid. Using the current density obtained from the solution in this subregion, cal- 
culations were performed in the interval ~2 = [0.0156; 10] on a uniform grid with ~00 nodes, 
and parameter A~ = 0.5. The potential at the point z = 0,0156 was chosen from the solution 
in ~z. In obtaining the solution in ~z the potential at the point z = 0.02 was recalculated 
by linear interpolation, the calculation was performed again in ~z, and so on, until the cur- 
rent density values in two successive iterations differed by no more than some small quantity. 
As a result of these calculations the current density proved equal to 28 A/cm 2, i.e., more 
than 50% larger than the current density obtained by calculations with the fixed grid, which 
indicates the need to perform more accurate calculations in the cathode region for such prob- 
lems. 
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A practical problem proposed by P. I. Akimov was considered, involving calculation of 
an electron gun in an electron-optical system, the geometry of which is shown in Fig. 3. The 
pressure of the residual gas, assumed to consist of nitrogen molecules, was p = 0.667 Pa, 
with ionization section assumed constant for all energies (o i = 3.10 -18 cm2). The solid line 
of Fig. 3 shows the behavior of electron trajectories, while the dashed line is an example of 

ion trajectory behavior. 

The author expresses his sincere gratitude to P. I. Akimov and A. L. Komov for posing 
the problem of consideration of ionization processes. 
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VIBRATIONAL RELAXATION OF CO2 MOLECULES DURING INJECTION INTO 

THE IONOSPHERE 

N. M. Bulgakova and A. K. Rebrov UDC 533.6.011.8+551.510.535 

The problem of the influence of spacecraft flights on the state of the atmosphere is 
raised in connection with the active conquest of space. Spacecraft engines throw a large 

�9 amount of H20, H2, and CO2 molecules into the atmosphere. The injected gas, in expanding, 
occupies volumes in the atmosphere with linear sizes of tens and even hundreds of kilometers. 
In this case the concentration of the ejected molecules remains comparable with the concen- 
tration of the atmospheric components. From this point of view, the injection of exhaust 
gases can make an appreciable contribution to the local heat balance of the atmosphere. The 
problem of the vibrational relaxation of water molecules behind a shock wave was discussed in 
[I] in connection with the above-indicated problem. The problem of the vibrational relaxation 
of C02 during mixing with the atmospheric gas is solved in the present work. 

In the temperature range of 2000-3000~ the vibrational relaxation of C02 in collisions 
with molecules takes place more slowly than that of H20, while the rates of excitation of the 
vibrational degrees of freedom of CO2 by electrons are considerably higher (by about 10s). 
In the F region of the ionosphere the degree of ionization of the atmospheric gas reaches 
10' 3 , and hence electrons can play a definite role in the excitation of C02 vibrational lev- 
els, which in turn affects the thermal radiation. 

Since the excitation of molecular gases by electrons is a natural phenomenon observed in 
the upper layers of the atmosphere, many papers have been devoted to this problem. A survey 
of papers on the rates of electron cooling in the ionosphere is made in [2], while [3] is 
devoted to the infrared emission of the undisturbed upper atmosphere with allowance for the 
excitation of CO2 vibrational levels by electrons and the influence on the intensity of 
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